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The advantages of the Hamiltonian formulation of mechanics: 1) It is the last step before 
making the observables into operators and developing quantum mechanics, 2) It allows for a 
powerful geometrical interpretation of classical mechanics in phase space, 3) and this in turn 
makes it very useful for nonlinear dynamics and statistical mechanics, 4) it is well-suited for 
applying perturbation theory, 5) it allows for ignorable coordinates to be fully exploited, and 
6) the Hamilton equations are first-order-in-time differential equations, which are often easier 
to solve than the second-order Euler-Lagrange equations.  

We considered the Hamiltonian description of a particle moving in one dimension under 
the influence of a conservative force and showed that Hamilton’s equations can be used to 
reproduce Newton’s second law of motion.  The procedure of utilizing the Hamiltonian 
method is: (1) choose the generalized coordinates 𝑞𝑖, (2) write down 𝑇,𝑈, and ℒ in terms of 
the coordinates and their time-derivatives, (3) compute the conjugate momenta 𝑝𝑖 = 𝜕ℒ/𝜕�̇�𝑖, 
(4) express the �̇�𝑖 in terms of 𝑞𝑖  𝑎𝑎𝑎 𝑝𝑖, (5) compute the Hamiltonian ℋ, and (6) write out 
and solve Hamilton’s equations. We then used the Hamilton method to solve for the 
equations of motion of a particle living in two dimensions described by polar coordinates.   

The generalized coordinates and their corresponding velocities together represent the 
state of the system as a single mathematical point in a 2n-dimensional state space.  The time 
evolution of the system is represented as a trajectory or orbit in this state space.  
Unfortunately the Lagrangian does not give a clear set of instructions for how the state point 
moves in this space, short of solving the equations of motion and calculating the trajectory.  
(The situation is very different for the Hamiltonian case.)  The generalized coordinates and 
their conjugate momenta, defined as 𝑝𝑖 = 𝜕ℒ/𝜕�̇�𝑖, constitute a set of 2𝑎 quantities that span 
phase space.  The instantaneous state of the entire system is summarized as a single 
mathematical point in this phase space.  Call this point 𝑧 = (�⃗�, �⃗�), where �⃗� = (𝑞1, … 𝑞𝑛) is an 
ordered list of the 𝑎 generalized coordinates, and �⃗� = (𝑝1, … 𝑝𝑛) is the list of 𝑎 conjugate 
momenta.  Hamiltonian’s equations describe how this point moves in phase space – in other 
words it describes how to evolve forward in time by using only “local information”, namely 
your instantaneous location in phase space.  Hence the Hamiltonian can be used to find the 
trajectory of the phase point without first solving the equations of motion.  Hamilton’s 
equations are a set of deterministic equations for the evolution of the phase point.  It shows 
that two trajectories that arise from two different initial conditions can never cross, because 
otherwise there would be two different trajectories arising from the same equation with the 
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same instantaneous value of 𝑧, contrary to the deterministic nature of the phase point 
evolution equation. 

As an example, we considered the 2𝑎 = 2 −dimensional phase space of a 𝑎 = 1 one-
dimensional harmonic oscillator.  The trajectory of the phase point is an ellipse in the (𝑥,𝑝) 
phase plane.   

The Hamiltonian dynamics formulation is useful for quantum mechanics and for 
statistical mechanics.  In quantum mechanics there is an uncertainty principle for a given 
coordinate and its conjugate momentum, namely ∆𝑥∆𝑝 ≥ ℏ/2.  This means that phase space 
is “chunky” or “fuzzy” on the scale of ℏ.  This in turn allows for a proper definition of 
entropy in terms of how many phase space “balls” of dimension ℏ are available to the 
system.   

What follows is a way to “derive” quantum mechanics starting from classical mechanics, 
following the logic of P. A. M. Dirac.  We consider first the Poisson Bracket (PB), which is 
defined as follows.  Consider two dynamical functions of the generalized coordinates and 
conjugate momenta: 𝑔(�⃗�, �⃗�) and ℎ(�⃗�, �⃗�).  Examples include components of angular 
momentum, a component of linear momentum, mechanical energy, linear kinetic energy, 
rotational kinetic energy, etc.  Define the PB of 𝑔,ℎ as [𝑔,ℎ] ≡ ∑ �𝜕𝜕

𝜕𝑞𝑖

𝜕ℎ
𝜕𝑝𝑖

− 𝜕𝜕
𝜕𝑝𝑖

𝜕ℎ
𝜕𝑞𝑖
�𝑛

𝑖=1 .  One 

can show quite easily that the following statements are true about the PB: 𝑑𝜕
𝑑𝑑

= [𝑔,ℋ] + 𝜕𝜕
𝜕𝑑

, 

�̇�𝑗 = �𝑞𝑗,ℋ�, �̇�𝑗 = �𝑝𝑗,ℋ�, �𝑞𝑗 , 𝑞𝑘� = 0, �𝑝𝑗, 𝑝𝑘� = 0, and most interestingly �𝑞𝑗 ,𝑝𝑘� = 𝛿𝑘𝑗.  
If the PB of two dynamical quantities vanishes, then the quantities are said to commute.  If 
the PB of two dynamical quantities is equal to 1, then the quantities are said to be 
canonically conjugate.  Any dynamical quantity that commutes with the Hamiltonian and is 
not explicitly time dependent is a constant of the motion of the system.  Knowing about such 
quantities can be very useful for understanding the motion of a complex system.  Also note 
from the definition of the PB that [𝑔,ℎ] = −[ℎ,𝑔].  Starting with this, Dirac noted that the 
essential new ingredient of quantum mechanics (QM) is that certain observables (𝑢� , 𝑣�) give 
different answers depending on the order in which the observables operate on a QM system, 
or in other words 𝑢�𝑣� ≠ 𝑣�𝑢� .  To account for this, Dirac re-defined the PB for the quantum 
case as follows: 𝑖ℏ[𝑢, 𝑣]𝑄𝑄 ≡ 𝑢𝑣 − 𝑣𝑢.  This leads to the following statements of the 
“fundamental quantum conditions” for the quantum position and momentum operators: 
𝑞𝑟𝑞𝑠 − 𝑞𝑠𝑞𝑟 = 0, 𝑝𝑟𝑝𝑠 − 𝑝𝑠𝑝𝑟 = 0, and 𝑞𝑟𝑝𝑠 − 𝑝𝑠𝑞𝑟 = 𝑖ℏ𝛿𝑟𝑠.  From this statement, one can 
derive many important results in quantum mechanics, as outlined in Dirac’s book Principles 
of Quantum Mechanics. 

Why would you want to use the PB in classical mechanics?  One reason is that you can 
calculate the time evolution of any dynamical variable (like 𝑔 or ℎ discussed above) using 
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the result 𝑑𝜕
𝑑𝑑

= [𝑔,ℋ] + 𝜕𝜕
𝜕𝑑

.  The PB can also be used to identify constants of the motion, as 
discussed in the paragraph above. 


